Skip to content

泉州一中信息学Blog

信息学奥赛技术分享博客

  • 登录
  • 小学oj
  • 中学oj
  • 测试页面1
  • Toggle search form

2024/1/27 集训总结

Posted on 2024年1月27日 By 怡灵 2024/1/27 集训总结无评论

It’s happy today!
we learned Dijkstra,Bellman-Ford and SPFA.

1.回顾邻接表

昨天学的,今天忘了

不会发图,不说了。

2.Dijkstra与优化

1.在数组dis[ i ]里查找S[ i ]!=1,并且dis[ i ]最小的顶点k
2.将S[ k ]改为1,表示 k 已经加入S集合中。即已经找到源点v0到点k的最短路径了。
3.修改T集合中每个顶点 j 的dis和path数组元素值:当S[ j ]!=1,且k到顶点 j 有dis[ k ]+e[ k ][ j ] v[i])权值为w[i]
3.初始化:dis[v0]=0,dis[ i ]=∞(i≠v0)
4.看看能否通过u[i]—>v[i] (权值为w[i])这条边,使源点到vi号顶点的距离变短。即源点到u[i]号顶点的距离(dis[u[i]]) 加上 u[i] —> v[i]这条边(权值为w[i])的值是否比原来源点到v[i]号点距离(dis[v[i]])要小。

只要进行n – 1 轮
可以判断负环

如果一个图没有负权回路,那么最短路径所包含的边最多为n-1条,即进行n-1轮松弛操作后最短路不会再发生变化。如果在n-1轮松弛后最短路仍然可以发生变化,则这个图一定有负权回路

4.SPFA

实际是3.的优化,加了队列。

即每次只将在本次松弛中最短路发生变化的点加入队列中

记源点为v0,vst[ ]记录点是否在队列中,距离值为dis[ ]。
1.初始化:dis[v0]=0,其他点的距离为∞;将源点v0入队,vst[ v0 ]=1
2.从队首取出点k,扫描所有由 k 结点可以一步到达的结点;一旦发现有结点 j 可以松弛,更新dis[ j ]的值,再检查j当前是否在队列中,如果不在,就将 j 入队。
3.重复执行步骤②,直到队列为空

That’s all.See you tomorrow!
训练日志

文章导航

Previous Post: 寒假集训2024 Day-2
Next Post: Winter Vacation Training Day 2 (01.27)

发表回复 取消回复

要发表评论,您必须先登录。

2025年 6月
一 二 三 四 五 六 日
 1
2345678
9101112131415
16171819202122
23242526272829
30  
« 2月    

2024常州 Class Classic OI Problems Contest cqr的长乐集训2023 CZYZ LOC New Game NOI NOIP Password Protected PM_PK Preview Problems Retrospect Selfmade Qusetion STL The end Training Uneasy Problem 蒟蒻 通报

  • 训练日志
  • 链表
  • 入门
  • 模拟
  • dfs序
  • 并查集
  • spfa
  • 最小割
  • 矩阵树定理
  • 仙人掌
  • BSGS
  • 凸包
  • 回文自动机
  • 递推与动归
  • 堆
  • 莫队算法
  • ST表
  • Treap
  • 树套树
  • 可持久化线段树
  • 初赛
  • 搜索
  • 贪心
  • 深度优先搜索
  • 欧拉图
  • dijkstra
  • 费用流
  • 哈夫曼树
  • kruskual
  • 置换
  • 旋转卡壳
  • KMP
  • 区间动归
  • STL
  • 链表
  • 可并堆
  • sply
  • 主席树
  • 可持久化字典树
  • 算法
  • 动态规划
  • 构造
  • 广度优先搜索
  • 最短路
  • floyd
  • 最大流
  • 虚树
  • prim
  • 筛法
  • 半平面交
  • 字典树
  • 背包动归
  • 基础数据结构
  • 分块
  • 线段树
  • 替罪羊树
  • K-DTree
  • 图论
  • 二分法
  • 迭代搜索
  • 拓扑排序
  • 有上下界网络流
  • 生成树
  • 快速幂
  • 后缀数组
  • 树形动归
  • 哈希表
  • 中级数据结构
  • 平衡树
  • 可持久化数据结构
  • 数据结构
  • 三分法
  • 启发式搜索
  • 图的连通
  • 点分治
  • 博弈论
  • AC自动机
  • 状压动归
  • 单调栈
  • 树状数组
  • 高级数据结构
  • OI资料
  • 数学
  • 高精度
  • 差分约束
  • 树上倍增
  • 素数测试
  • 后缀自动机
  • 数位动归
  • 单调队列
  • 新闻
  • 几何
  • 随机化
  • 二分图染色
  • 树链剖分
  • 欧拉函数
  • manacher
  • 斜率优化
  • 离线处理
  • 信息学奥赛学长风采
  • 字符串
  • 二分图匹配
  • prufer编码
  • 卡特兰数
  • 密码学
  • 决策单调
  • 赛后总结
  • 其他
  • 2-SAT
  • 最近公共祖先
  • 矩阵乘法
  • 记忆化搜索
  • 网络流
  • Link cut tree
  • 排列组合
  • 树
  • 高斯消元
  • 乘法逆元
  • 容斥原理
  • 调和级数
  • 概率与期望
  • 模线性方程组
  • 莫比乌斯反演
  • 快速傅里叶变换
  • 扩展欧几里德
  • 最大公约数与最小公倍数

近期文章

  • DP杂题
  • 2025年2月13日模拟赛
  • HLOJ-TEST ROUND 4-T1/T2(构造)- 3
  • HLOJ-TEST ROUND 4-T1/T2(构造)- 2
  • HLOJ-TEST ROUND 4-T1/T2(构造)- 1

近期评论

归档

  • 2025年2月
  • 2025年1月
  • 2024年11月
  • 2024年10月
  • 2024年9月
  • 2024年8月
  • 2024年7月
  • 2024年3月
  • 2024年2月
  • 2024年1月
  • 2023年12月
  • 2023年11月
  • 2023年10月
  • 2023年9月
  • 2023年8月
  • 2023年7月
  • 2023年3月
  • 2023年2月
  • 2023年1月
  • 2022年12月

Copyright © 2025 泉州一中信息学Blog.

Powered by PressBook WordPress theme