1937: 上网
内存限制:256 MB
时间限制:100.000 S
评测方式:文本比较
命题人:
提交:31
解决:16
题目描述
假设有n个人要上网,却只有1台电脑可以上网。上网的时间是从1 szw 至 T szw ,szw是sxc,zsx,wl自创的时间单位,至于 szw怎么换算成s,min或h,没有人清楚。依次给出每个人在某个时间段内上网的快乐程度C(必须这个人在整个时间段内都在上网,才能获得快乐程度C,否则,快乐程度是0),请你得到使总的快乐程度达到最大的方案。
输入
第1行2个整数 n和T,含义如题目所述;
接下来有n个这样的结构(每两个相邻的结构之间有一空行,且第1个结构和第一行间有一空行):
第1行一个整数Mi,表示第i个人的时间段的个数;
接下来有Mi行,每行3个整数Xj,Yj,C,表示第i个人在[Xj,Yj]内上网的快乐程度为C,
因此有Xj-Yj-1=1,X1=1,Ymi=T,Xj<=Yj。
输出
仅输出一行,为总的最大的快乐程度。
样例输入 复制
3 10
3
1 3 6
4 7 9
8 10 3
3
1 3 5
4 7 10
8 10 1
4
1 3 2
4 8 2
9 9 6
10 10 3
样例输出 复制
25
提示
【样例说明】
在[1,3]内,安排1上网,快乐程度为6;
在[4,7]内,安排2上网,快乐程度为10;
在[8,8]内,不安排;
在[9,9]内,安排3上网,快乐程度为6;
在[10,10]内,安排3上网,快乐程度为3;
这是使总的快乐程度达到最大的方案,对应的值是25。
【数据范围】
对于30%的数据,n<=4,所有的Mi<=5,T<=20;
对于60%的数据,n<=100,所有的Mi<=100,T<=2000;
对于100%的数据,n<=500,所有的Mi<=500,T<=500000,所有的0<C<=10^9,并保证最终解Max<=10^9。